16 research outputs found

    Cooperation strategies for inter-cell interference mitigation in OFDMA systems

    Get PDF
    Recently the use of modern cellular networks has drastically changed with the emerging Long Term Evolution Advanced (LTE-A) technology. Homogeneous networks which were initially designed for voice-centric and low data rates face unprecedented challenges for meeting the increasing traffic demands of high data-driven applications and their important quality of service requirements. Therefore, these networks are moving towards the so called Heterogeneous Networks (HetNets). HetNets represent a new paradigm for cellular networks as their nodes have different characteristics such as transmission power and radio frequency coverage area. Consequently, a HetNet shows completely different interference characteristics compared to homogeneous deployment and attention must be paid to these disparities when different tiers are collocated together. This is mostly due to the potential spectrum frequency reuse by the involved tiers in the HetNets. Hence, efficient inter-cell interference mitigation solutions in co-channel deployments of HetNets remain a challenge for both industry and academic researchers. This thesis focuses on LTE-A HetNet systems which are based on Orthogonal Frequency Division Multiplexing Access (OFDMA) modulation. Our aim is to investigate the aggressive interference issue that appears when different types of base stations are jointly deployed together and especially in two cases, namely Macro-Femtocells and Macro-Picocells co-existence. We propose new practical power adjustment solutions for managing inter-cell interference dynamically for both cases. In the first part dedicated to Femtocells and Macrocell coexistence, we design a MBS-assisted femtocell power adjustment strategy which takes into account femtocells users performance while mitigating the inter-cell interference on victim macrocell users. Further, we propose a new cooperative and context-aware interference mitigation method which is derived for realistic scenarios involving mobility of users and their varying locations. We proved numerically that the Femtocells are able to maintain their interference under a desirable threshold by adjusting their transmission power. Our strategies provide an efficient means for achieving the desired level of macrocell/femtocell throughput trade-off. In the second part of the studies where Picocells are deployed under the umbrella of the Macrocell, we paid a special attention and efforts to the interference management in the situation where Picocells are configured to set up a cell range expansion. We suggest a MBS-assisted collaborative scheme powered by an analytical model to predict the mobility of Macrocell users passing through the cell range expansion area of the picocell. Our goal is to adapt the muting ratio ruling the frequency resource partitioning between both tiers according to the mobility behavior of the range-expanded users, thereby providing an efficient trade-off between Macrocell and Picocell achievable throughputs.RĂ©cemment, l'utilisation des rĂ©seaux cellulaires a radicalement changĂ© avec l’émergence de la quatriĂšme gĂ©nĂ©ration (4G) de systĂšmes de tĂ©lĂ©communications mobiles LTE/LTE-A (Long Term Evolution-Advanced). Les rĂ©seaux de gĂ©nĂ©rations prĂ©cĂ©dentes (3G), initialement conçus pour le transport de la voix et les donnĂ©es Ă  faible et moyen dĂ©bits, ont du mal Ă  faire face Ă  l’augmentation accrue du trafic de donnĂ©es multimĂ©dia tout en rĂ©pondant Ă  leurs fortes exigences et contraintes en termes de qualitĂ© de service (QdS). Pour mieux rĂ©pondre Ă  ces besoins, les rĂ©seaux 4G ont introduit le paradigme des RĂ©seaux HĂ©tĂ©rogĂšnes (HetNet).Les rĂ©seaux HetNet introduisent une nouvelle notion d’hĂ©tĂ©rogĂ©nĂ©itĂ© pour les rĂ©seaux cellulaires en introduisant le concept des smalls cells (petites cellules) qui met en place des antennes Ă  faible puissance d’émission. Ainsi, le rĂ©seau est composĂ© de plusieurs couches (tiers) qui se chevauchent incluant la couverture traditionnelle macro-cellulaire, les pico-cellules, les femto-cellules, et les relais. Outre les amĂ©liorations des couvertures radio en environnements intĂ©rieurs, les smalls cells permettent d’augmenter la capacitĂ© du systĂšme par une meilleure utilisation du spectre et en rapprochant l’utilisateur de son point d’accĂšs au rĂ©seau. Une des consĂ©quences directes de cette densification cellulaire est l’interfĂ©rence gĂ©nĂ©rĂ©e entre les diffĂ©rentes cellules des diverses couches quand ces derniĂšres rĂ©utilisent les mĂȘmes frĂ©quences. Aussi, la dĂ©finition de solutions efficaces de gestion des interfĂ©rences dans ce type de systĂšmes constitue un de leurs dĂ©fis majeurs. Cette thĂšse s’intĂ©resse au problĂšme de gestion des interfĂ©rences dans les systĂšmes hĂ©tĂ©rogĂšnes LTE-A. Notre objectif est d’apporter des solutions efficaces et originales au problĂšme d’interfĂ©rence dans ce contexte via des mĂ©canismes d’ajustement de puissance des petites cellules. Nous avons pour cela distinguĂ©s deux cas d’étude Ă  savoir un dĂ©ploiement Ă  deux couches macro-femtocellules et macro-picocellules. Dans la premiĂšre partie dĂ©diĂ©e Ă  un dĂ©ploiement femtocellule et macrocellule, nous concevons une stratĂ©gie d'ajustement de puissance des femtocellules assistĂ© par la macrocellule et qui prend en compte les performances des utilisateurs des femtocells tout en attĂ©nuant l'interfĂ©rence causĂ©e aux utilisateurs des macrocellules sur leurs liens montants. Cette solution offre l’avantage de la prise en compte de paramĂštres contextuels locaux aux femtocellules (tels que le nombre d’utilisateurs en situation de outage) tout en considĂ©rant des scĂ©narios de mobilitĂ© rĂ©alistes. Nous avons montrĂ© par simulation que les interfĂ©rences sur les utilisateurs des macrocellules sont sensiblement rĂ©duites et que les femtocellules sont en mesure de dynamiquement ajuster leur puissance d'Ă©mission pour atteindre les objectifs fixĂ©s en termes d’équilibre entre performance des utilisateurs des macrocellules et celle de leurs propres utilisateurs. Dans la seconde partie de la thĂšse, nous considĂ©rons le dĂ©ploiement de picocellules sous l'Ă©gide de la macrocellule. Nous nous sommes intĂ©ressĂ©s ici aux solutions d’extension de l’aire picocellulaire qui permettent une meilleure association utilisateur/cellule permettant de rĂ©duire l’interfĂ©rence mais aussi offrir une meilleure efficacitĂ© spectrale. Nous proposons donc une approche basĂ©e sur un modĂšle de prĂ©diction de la mobilitĂ© des utilisateurs qui permet de mieux ajuster la proportion de bande passante Ă  partager entre la macrocellule et la picocellule en fonction de la durĂ©e de sĂ©jour estimĂ©e de ces utilisateurs ainsi que de leur demandes en bande passante. Notre solution a permis d’offrir un bon compromis entre les dĂ©bits rĂ©alisables de la Macro et des picocellules

    Pre-bcc: a novel integrated machine learning framework for predicting mechanical and durability properties of blended cement concrete

    Get PDF
    Partially replacing ordinary Portland cement (OPC) with low-carbon supplementary cementitious materials (SCMs) in blended cement concrete (BCC) is perceived as the most promising route for sustainable concrete production. Despite having a lower environmental impact, BCC could exhibit performance inferior to OPC in design-governing functional properties. Hence, concrete manufacturers and scientists have been seeking methods to predict the performance of BCC mixes in order to reduce the cost and time of experimentally testing all alternatives. Machine learning algorithms have been proven in other fields for treating large amounts of data drawing meaningful relationships between data accurately. However, the existing prediction models in the literature come short in covering a wide range of SCMs and/or functional properties. Considering this, in this study, a non-linear multi-layered machine learning regression model was created to predict the performance of a BCC mix for slump, strength, and resistance to carbonation and chloride ingress based on any of five prominent SCMs: fly ash, ground granulated blast furnace slag, silica fume, lime powder and calcined clay. A database from>150 peer-reviewed sources containing>1650 data points was created to train and test the model. The statistical performance was found to be comparable to that of existing models (R = 0.94–0.97). For the first time, the model, Pre-bcc, was also made available online for users to conduct their own prediction studies.Peer ReviewedPostprint (published version

    On the use of radio environment maps for interference management in heterogeneous networks

    Get PDF
    ©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This article addresses the use of REMs to support interference management optimization in heterogeneous networks composed of cells of different sizes and including both cellular and non-cellular (e.g. WiFi) technologies. After presenting a general architecture for including REM databases in different network entities, the article analyzes the achievable benefits in relation to specific interference management techniques, including a discussion on practical considerations such as information exchange requirements, REM ownership, and security aspects. Finally, several research directions derived from the proposed framework are identified.Peer ReviewedPostprint (author's final draft

    Les stratégies de coopération inter-cellules pour l'atténuation des interférences dans les systÚmes OFDMA

    No full text
    RĂ©cemment, l'utilisation des rĂ©seaux cellulaires a radicalement changĂ© avec l’émergence de la quatriĂšme gĂ©nĂ©ration (4G) de systĂšmes de tĂ©lĂ©communications mobiles LTE/LTE-A (Long Term Evolution-Advanced). Les rĂ©seaux de gĂ©nĂ©rations prĂ©cĂ©dentes (3G), initialement conçus pour le transport de la voix et les donnĂ©es Ă  faible et moyen dĂ©bits, ont du mal Ă  faire face Ă  l’augmentation accrue du trafic de donnĂ©es multimĂ©dia tout en rĂ©pondant Ă  leurs fortes exigences et contraintes en termes de qualitĂ© de service (QdS). Pour mieux rĂ©pondre Ă  ces besoins, les rĂ©seaux 4G ont introduit le paradigme des RĂ©seaux HĂ©tĂ©rogĂšnes (HetNet).Les rĂ©seaux HetNet introduisent une nouvelle notion d’hĂ©tĂ©rogĂ©nĂ©itĂ© pour les rĂ©seaux cellulaires en introduisant le concept des smalls cells (petites cellules) qui met en place des antennes Ă  faible puissance d’émission. Ainsi, le rĂ©seau est composĂ© de plusieurs couches (tiers) qui se chevauchent incluant la couverture traditionnelle macro-cellulaire, les pico-cellules, les femto-cellules, et les relais. Outre les amĂ©liorations des couvertures radio en environnements intĂ©rieurs, les smalls cells permettent d’augmenter la capacitĂ© du systĂšme par une meilleure utilisation du spectre et en rapprochant l’utilisateur de son point d’accĂšs au rĂ©seau. Une des consĂ©quences directes de cette densification cellulaire est l’interfĂ©rence gĂ©nĂ©rĂ©e entre les diffĂ©rentes cellules des diverses couches quand ces derniĂšres rĂ©utilisent les mĂȘmes frĂ©quences. Aussi, la dĂ©finition de solutions efficaces de gestion des interfĂ©rences dans ce type de systĂšmes constitue un de leurs dĂ©fis majeurs. Cette thĂšse s’intĂ©resse au problĂšme de gestion des interfĂ©rences dans les systĂšmes hĂ©tĂ©rogĂšnes LTE-A. Notre objectif est d’apporter des solutions efficaces et originales au problĂšme d’interfĂ©rence dans ce contexte via des mĂ©canismes d’ajustement de puissance des petites cellules. Nous avons pour cela distinguĂ©s deux cas d’étude Ă  savoir un dĂ©ploiement Ă  deux couches macro-femtocellules et macro-picocellules. Dans la premiĂšre partie dĂ©diĂ©e Ă  un dĂ©ploiement femtocellule et macrocellule, nous concevons une stratĂ©gie d'ajustement de puissance des femtocellules assistĂ© par la macrocellule et qui prend en compte les performances des utilisateurs des femtocells tout en attĂ©nuant l'interfĂ©rence causĂ©e aux utilisateurs des macrocellules sur leurs liens montants. Cette solution offre l’avantage de la prise en compte de paramĂštres contextuels locaux aux femtocellules (tels que le nombre d’utilisateurs en situation de outage) tout en considĂ©rant des scĂ©narios de mobilitĂ© rĂ©alistes. Nous avons montrĂ© par simulation que les interfĂ©rences sur les utilisateurs des macrocellules sont sensiblement rĂ©duites et que les femtocellules sont en mesure de dynamiquement ajuster leur puissance d'Ă©mission pour atteindre les objectifs fixĂ©s en termes d’équilibre entre performance des utilisateurs des macrocellules et celle de leurs propres utilisateurs. Dans la seconde partie de la thĂšse, nous considĂ©rons le dĂ©ploiement de picocellules sous l'Ă©gide de la macrocellule. Nous nous sommes intĂ©ressĂ©s ici aux solutions d’extension de l’aire picocellulaire qui permettent une meilleure association utilisateur/cellule permettant de rĂ©duire l’interfĂ©rence mais aussi offrir une meilleure efficacitĂ© spectrale. Nous proposons donc une approche basĂ©e sur un modĂšle de prĂ©diction de la mobilitĂ© des utilisateurs qui permet de mieux ajuster la proportion de bande passante Ă  partager entre la macrocellule et la picocellule en fonction de la durĂ©e de sĂ©jour estimĂ©e de ces utilisateurs ainsi que de leur demandes en bande passante. Notre solution a permis d’offrir un bon compromis entre les dĂ©bits rĂ©alisables de la Macro et des picocellules.Recently the use of modern cellular networks has drastically changed with the emerging Long Term Evolution Advanced (LTE-A) technology. Homogeneous networks which were initially designed for voice-centric and low data rates face unprecedented challenges for meeting the increasing traffic demands of high data-driven applications and their important quality of service requirements. Therefore, these networks are moving towards the so called Heterogeneous Networks (HetNets). HetNets represent a new paradigm for cellular networks as their nodes have different characteristics such as transmission power and radio frequency coverage area. Consequently, a HetNet shows completely different interference characteristics compared to homogeneous deployment and attention must be paid to these disparities when different tiers are collocated together. This is mostly due to the potential spectrum frequency reuse by the involved tiers in the HetNets. Hence, efficient inter-cell interference mitigation solutions in co-channel deployments of HetNets remain a challenge for both industry and academic researchers. This thesis focuses on LTE-A HetNet systems which are based on Orthogonal Frequency Division Multiplexing Access (OFDMA) modulation. Our aim is to investigate the aggressive interference issue that appears when different types of base stations are jointly deployed together and especially in two cases, namely Macro-Femtocells and Macro-Picocells co-existence. We propose new practical power adjustment solutions for managing inter-cell interference dynamically for both cases. In the first part dedicated to Femtocells and Macrocell coexistence, we design a MBS-assisted femtocell power adjustment strategy which takes into account femtocells users performance while mitigating the inter-cell interference on victim macrocell users. Further, we propose a new cooperative and context-aware interference mitigation method which is derived for realistic scenarios involving mobility of users and their varying locations. We proved numerically that the Femtocells are able to maintain their interference under a desirable threshold by adjusting their transmission power. Our strategies provide an efficient means for achieving the desired level of macrocell/femtocell throughput trade-off. In the second part of the studies where Picocells are deployed under the umbrella of the Macrocell, we paid a special attention and efforts to the interference management in the situation where Picocells are configured to set up a cell range expansion. We suggest a MBS-assisted collaborative scheme powered by an analytical model to predict the mobility of Macrocell users passing through the cell range expansion area of the picocell. Our goal is to adapt the muting ratio ruling the frequency resource partitioning between both tiers according to the mobility behavior of the range-expanded users, thereby providing an efficient trade-off between Macrocell and Picocell achievable throughputs

    Femtocell power control methods based on users’ context information in two-tier heterogeneous networks

    Get PDF
    In this paper, we consider a two-tier macrocell/ femtocell overlaid heterogeneous network based on orthogonal frequency division multiple access (OFDMA) technology. Although the co-channel spectrum allocation provides larger bandwidth for both macrocell and femtocells, the resulting cross-tier interference may prevent macrocell users in the vicinity of femtocells to achieve their minimum required signal-to-interference plus noise ratio (SINR) in downlink. Therefore, we propose femtocell power control strategies for mitigating the interference experienced by macrocell users while preventing the femtocell throughput degradation. In particular, the proposed power control schemes make use of femto and macro users’ context information in terms of positioning for setting the appropriate prioritization weights among the current victim macro users and the femto users in outage. System-level simulations show that our schemes enhance the throughput of macrocell users while maintaining a high performance for femtocell users compared to a conventional power allocation. Moreover, we show that the proposed prioritization weights allow to achieve the required level of macrocell/femtocell throughput trade-off

    Femtocell Power Control Methods based on Users' Context Information in Two-Tier Heterogeneous Networks

    No full text
    International audienc
    corecore